Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
1.
Infektsionnye Bolezni ; 20(4):12-24, 2022.
Article in Russian | EMBASE | ID: covidwho-20240463

ABSTRACT

Neutrophilic granulocytes (NG) are the main drivers of pathological inflammation in COVID-19. Objective. To specify the mechanisms of immunopathogenesis of COVID-19 based on a comparative immunological study of the number and phenotype of CD16+SD62L+CD11b+CD63- and CD16+SD62L+CD11b+CD63+ subsets with an assessment of their effector functions against changing profile of NG-associated cytokines IL-8, IL-18, IL-17A, VEGF-A, IFNalpha, and IFNgamma. Patients and methods. In patients with moderate-to-severe and severe COVID-19, we determined IL-1beta, TNFalpha, IL-6, IL-8, IL-18, IL-17A, VEGF-A, IFNalpha, and IFNgamma (ELISA), the phenotype of CD16+SD62L+CD11b+CD63- and CD16+SD62L+CD11b+CD63+ subsets, NF-kappaB-NG (CYTOMICS FC500), phagocytically active NG (%), neutrophil extracellular traps (NETs), NG in apoptosis, and the activity of NADPH oxidase. Results. In COVID-19 against the background of IFNalpha and IFNgamma production blockade and high levels of NG-associated IL-8, IL-18, IL-17A, VEGF-A, a reduction in the number of mature and functionally active CD16brightSD62LbrightCD11bbrightCD63-NG subsets was revealed, as well as an increase in the number of CD16dimSD62LdimSD11bbrightCD63-NG subsets with an immunosuppressive phenotype and CD16brightSD62LbrightSD11bbrightCD63bright-NG subsets with high cytotoxic activity and ability to form NETs, a decrease in the percentage of phagocytically active NG and an increase in the activity of NADPH oxidase, NETs, and NG in apoptosis. Conclusion. IFNalpha deficiency provokes a hyperergic response of NG-associated cytokines, which leads to the formation of uncontrolled immune inflammation involving NG subsets with an immunosuppressive and cytotoxic phenotype, exacerbating the course of COVID-19. The use of recombinant IFNalpha-2b with antioxidants (Viferon) in the early stages of the disease can help to restore immune homeostasis, normalize the level of NG-associated cytokines, reduce NERTs, and achieve good clinical efficacy.Copyright © 2022, Dynasty Publishing House. All rights reserved.

2.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20237062

ABSTRACT

Project objective: Despite the recent revolution in immune checkpoint inhibitors (ICIs), only modest improvement in overall survival and likely caused by not enough potent cellular immunity among BC patients. Our lab has been focus on inducing cellular immunity against HER2+ BC through vaccination against the tumor-associated antigen HER2. Approximately 20 years ago, we performed an experimental pilot study by administrating HER2 peptide and recombinant protein pulsed dendritic cells (DC vaccine) to six patients with refractory HER2+ advanced or metastatic (stage II (>= 6 +LN), III, or stage IV) BC. We followed the patients on 2019 found that all of the six patients were still alive, 18 years after vaccination. Their blood sample were analyzed with cytometry by time-offlight (CyTOF) and found there is a significantly increased presence of CD27 expressing memory T cells in response to HER2 peptide stimulation. Recent report on the SARS-CoV2 mRNA vaccine also suggested that CD27 expressing memory T cells plays a critical role in long-lasting cellular immunity against SARS-CoV2 infection. Therefore, we hypothesized that CD27 plays a critical role in cellular immunity against BC, and the stimulation of CD27 expressing T cells with mAb targeting CD27 significantly increase the cellular immunity triggered by vaccination against tumor-associated antigen. Result(s): We recapitulate the rise of CD27+ antigen specific T cells among the vaccinated patients using a transgenic mouse model expressing human CD27. When combined the adenoviral-vector based HER2 (Ad-HER2) vaccination with a single dose of human aCD27 antibody (Varlilumab), we found there is a robust increase in the HER2 specific T cells compared to vaccination alone, especially CD27+CD44+ memory CD4 T cells, even after 120 days post vaccination. Using an ICIinsensitive syngeneic HER2+ BC models, we found 50% of mice in the combination group of aCD27 antibody plus Ad-HER2 showed total tumor regression by the end of study. When combined with anti-PD1 antibody, the combination of AdHER2 and Varlilumab leads to total tumor regression in 90% of tumor bearing mice with syngeneic HER2+ BC, indicating that the vaccination against tumor associated antigen HER2 plus anti-CD27 antibody sensitized ICI-insensitive HER2+ BC toward ICI. Conclusion(s): Our data demonstrates that the administration of anti-CD27 antibody significantly increase the long term presence of CD27+ antigen specific memory T cells after vaccination against tumor associated antigen HER2. As consequence, combination of anti-CD27 with HER2 sensitized the immune unresponsive breast cancer toward anti-PD1 antibody. Our study suggests that the vaccination against tumor-associated antigen with mAb targeting CD27 leads to the robust cellular immunity, which is required for successful ICIs against breast cancer.

3.
Animals ; 13(11):1766, 2023.
Article in English | ProQuest Central | ID: covidwho-20235886

ABSTRACT

Simple SummaryDuring the long-term co-evolution of the virus and the host, even closely related vaccines may emerge with incomplete protective immunity due to the mutations or deletions of amino acids at specific antigenic sites. The mutation of PEDV was accelerated by the recombination of different strains and the mutation of the strains adapting to the environment. These mutations either cause immune escape from conventional vaccines or affect the virulence of the virus. Therefore, researching and developing new vaccines with cross-protection through continuous monitoring, isolation and sequencing are important to determine whether their genetic characteristics are changed and to evaluate the protective efficacy of current vaccines. The porcine epidemic diarrhea virus (PEDV) can cause severe piglet diarrhea or death in some herds. Genetic recombination and mutation facilitate the continuous evolution of the virus (PEDV), posing a great challenge for the prevention and control of porcine epidemic diarrhea (PED). Disease materials of piglets with PEDV vaccination failure in some areas of Shanxi, Henan and Hebei provinces of China were collected and examined to understand the prevalence and evolutionary characteristics of PEDV in these areas. Forty-seven suspicious disease materials from different litters on different farms were tested by multiplex PCR and screened by hematoxylin-eosin staining and immunohistochemistry. PEDV showed a positivity rate of 42.6%, infecting the small and large intestine and mesenteric lymph node tissues. The isolated strains infected Vero, PK-15 and Marc-145 multihost cells and exhibited low viral titers in all three cell types, as indicated by their growth kinetic curves. Possible putative recombination events in the isolates were identified by RDP4.0 software. Sequencing and phylogenetic analysis showed that compared with the classical vaccine strain, PEDV SX6 contains new insertion and mutations in the S region and belongs to genotype GIIa. Meanwhile, ORF3 has the complete amino acid sequence with aa80 mutated wild strains, compared to vaccine strains CV777, AJ1102, AJ1102-R and LW/L. These results will contribute to the development of new PEDV vaccines based on prevalent wild strains for the prevention and control of PED in China.

4.
BIOpreparations ; Prevention, Diagnosis, Treatment. 23(1):76-89, 2023.
Article in Russian | EMBASE | ID: covidwho-20234832

ABSTRACT

Monitoring of the proportion of immune individuals and the effectiveness of vaccination in a population involves evaluation of several important parameters, including the level of virus-neutralising antibodies. In order to combat the COVID-19 pandemic, it is essential to develop approaches to detecting SARS-CoV-2 neutralising antibodies by safe, simple and rapid methods that do not require live viruses. To develop a test system for enzyme-linked immunosorbent assay (ELISA) that detects potential neutralising antibodies, it is necessary to obtain a highly purified recombinant receptor-binding domain (RBD) of the spike (S) protein with high avidity for specific antibodies. The aim of the study was to obtain and characterise a SARSCoV-2 S-protein RBD homodimer and a recombinant RBD-expressing cell line, as well as to create an ELISA system for detecting potential neutralising antibodies. Material(s) and Method(s): the genetic construct was designed in silico. To generate a stable producer cell line, the authors transfected CHO-S cells, subjected them to antibiotic pressure, and selected the optimal clone. To isolate monomeric and homodimeric RBD forms, the authors purified the recombinant RBD by chromatographic methods. Further, they analysed the activity of the RBD forms by Western blotting, bio-layer interferometry, and indirect ELISA. The analysis involved monoclonal antibodies GamXRH19, GamP2C5, and h6g3, as well as serum samples from volunteers vaccinated with Gam-COVID-Vac (Sputnik V) and unvaccinated ones. Result(s): the authors produced the CHO-S cell line for stable expression of the recombinant SARS-CoV-2 S-protein RBD. The study demonstrated the recombinant RBD's ability to homodimerise after fed-batch cultivation of the cell line for more than 7 days due to the presence of unpaired cysteines. The purified recombinant RBD yield from culture broth was 30-50 mg/L. Monomeric and homodimeric RBD forms were separated using gel-filtration chromatography and characterised by their ability to interact with specific monoclonal antibodies, as well as with serum samples from vaccinated volunteers. The homodimeric recombinant RBD showed increased avidity for both monoclonal and immune sera antibodies. Conclusion(s): the homodimeric recombinant RBD may be more preferable for the analysis of levels of antibodies to the receptor-binding domain of the SARS-CoV-2 S protein.Copyright © 2023 Authors. All rights reserved.

5.
Cytotherapy ; 25(6 Supplement):S258-S259, 2023.
Article in English | EMBASE | ID: covidwho-20232306

ABSTRACT

Background & Aim: The new UCOE models we have recently developed, tested on many cell groups (including mouse ES and human iPS cells) and human mAb recombinant production studies as well, shows a powerful resistance to DNA methylation- mediated silencing and provides a higher and stable transfection profile. By the urgent need of vaccine development for COVID-19 during the pandemic, in this study we aimed to produce a potential recombinant vaccine by using the new generation UCOEs models of our own design. Methods, Results & Conclusion(s): Existing new-generation UCOE models and standard plasmid vectors to be used as control group were provided. Then, the sequences related to the PCR method were amplified for sufficient stock generation and cloning experiments. Verification in the plasmid vector was carried out in gel electrophoresis. Transfection of 293T cells was performed with clone plasmids carrying antigen genes and plasmids carrying genetic information of lentivirus units for the production of lentiviral vectors. Afterwards, 293T cells produced lentiviral vectors carrying antigen genes. Harvesting of these vectors was carried out during 48th and 72nd hours. Afterwards, CHO cells were transduced with appropriate quantity of lentiviral vectors. Isolation and purification of targeted proteins from the relevant medium were performed by HPLC and Q-TOF methods. A part of the spike and nucleocapsid gene sequences of COVID-19 were firstly cloned into our UCOE models. These UCOEs plasmids were then transferred into 293T cells along with plasmids carrying the genes that will form the lentivirus vectors (LVs). After harvesting and calculation of LV vector titers, the cloned vectors were then transfected into the CHO cells which the targeted recombinant production of the antigen proteins will be carried out. Antigenic structures were then isolated from the culture medium of CHO cells in following days for confirmation. Using HPLC and qTOF mass spectrometer methods, these structures in the medium were confirmed to be the units of spike and nucleocapsid proteins of the COVID-19 virus. In order to produce large amount of the recombinant antigens, the culture was then carried out with bioreactors in liters. At the final stage, these recombinantly produced antigen proteins were tested on rats to measure their immunogenic responses, and the study recently been completed successfully as a potential recombinant vaccine against COVID-19.Copyright © 2023 International Society for Cell & Gene Therapy

6.
Eur J Case Rep Intern Med ; 10(6): 003742, 2023.
Article in English | MEDLINE | ID: covidwho-20240119

ABSTRACT

Introduction: We describe a case of remitting seronegative symmetrical synovitis with pitting oedema (RS3PE) syndrome following administration of the ChAdOx1-S/nCoV-19 [recombinant] vaccine, suggesting a possible causal link. Case Description: A 72-year-old man presented to his general practitioner with swollen, oedematous hands and legs 2 weeks after receiving a coronavirus vaccine. He had raised inflammatory markers but remained systemically well. He was initially presumed to have cellulitis, but his symptoms persisted despite several courses of antibiotics. Deep vein thromboses, cardiac failure, renal failure and hypoalbuminaemia were ruled out. Upon Rheumatology review, he was diagnosed as having RS3PE syndrome with the Covid vaccine suspected of being an immunogenic trigger. Following initiation of steroid therapy, his symptoms improved dramatically, as is characteristic of RS3PE syndrome. Discussion: The pathophysiology of RS3PE is unclear. It is known to have various triggers and associations including infections, certain vaccines and malignancy. This case highlights that a coronavirus vaccine (ChAdOx1-S/nCoV-19 [recombinant] vaccine) is also a possible trigger. Factors that make the diagnosis likely include an acute onset of symptoms including pitting oedema in a typical distribution, age above 50, and unremarkable autoimmune serology. Other learning points from this case include the importance of antibiotic stewardship and the need to explore non-infectious causes of illness when antibiotics do not improve symptoms. Conclusion: The ChAdOx1-S/nCoV-19 [recombinant] vaccine is a possible trigger of RS3PE. However, the benefits of vaccines against coronavirus outweigh the risks in the majority of patients. LEARNING POINTS: This case demonstrates a possible link between the ChAdOx1-S/nCoV-19 [recombinant] vaccine and autoimmune conditions such as RS3PE.It is important to consider alternative diagnoses when antibiotic regimes fail to work.A barrier to accurate diagnosis includes an episodic approach, where a patient presents to multiple clinicians acutely rather than having a long-term, continuous relationship with a single multi-disciplinary team, where response to treatment can be monitored.

7.
Vaccines (Basel) ; 11(5)2023 May 21.
Article in English | MEDLINE | ID: covidwho-20238903

ABSTRACT

The COVID-19 pandemic has underscored the importance of swift responses and the necessity of dependable technologies for vaccine development. Our team previously developed a fast cloning system for the modified vaccinia virus Ankara (MVA) vaccine platform. In this study, we reported on the construction and preclinical testing of a recombinant MVA vaccine obtained using this system. We obtained recombinant MVA expressing the unmodified full-length SARS-CoV-2 spike (S) protein containing the D614G amino-acid substitution (MVA-Sdg) and a version expressing a modified S protein containing amino-acid substitutions designed to stabilize the protein a in a pre-fusion conformation (MVA-Spf). S protein expressed by MVA-Sdg was found to be expressed and was correctly processed and transported to the cell surface, where it efficiently produced cell-cell fusion. Version Spf, however, was not proteolytically processed, and despite being transported to the plasma membrane, it failed to induce cell-cell fusion. We assessed both vaccine candidates in prime-boost regimens in the susceptible transgenic K18-human angiotensin-converting enzyme 2 (K18-hACE2) in mice and in golden Syrian hamsters. Robust immunity and protection from disease was induced with either vaccine in both animal models. Remarkably, the MVA-Spf vaccine candidate produced higher levels of antibodies, a stronger T cell response, and a higher degree of protection from challenge. In addition, the level of SARS-CoV-2 in the brain of MVA-Spf inoculated mice was decreased to undetectable levels. Those results add to our current experience and range of vaccine vectors and technologies for developing a safe and effective COVID-19 vaccine.

8.
Expert Rev Vaccines ; 22(1): 495-500, 2023.
Article in English | MEDLINE | ID: covidwho-20236937

ABSTRACT

INTRODUCTION: The development of a yeast-expressed recombinant protein-based vaccine technology co-developed with LMIC vaccine producers and suitable as a COVID-19 vaccine for global access is described. The proof-of-concept for developing a SARS-CoV-2 spike protein receptor-binding domain (RBD) antigen as a yeast-derived recombinant protein vaccine technology is described. AREAS COVERED: Genetic Engineering: The strategy is presented for the design and genetic modification used during cloning and expression in the yeast system. Process and Assay Development: A summary is presented of how a scalable, reproducible, and robust production process for the recombinant protein COVID-19 vaccine antigen was developed. Formulation and Pre-clinical Strategy: We report on the pre-clinical and formulation strategy used for the proof-of-concept evaluation of the SARS-CoV-2 RBD vaccine antigen. Technology Transfer and Partnerships: The process used for the technology transfer and co-development with LMIC vaccine producers is described. Clinical Development and Delivery: The approach used by LMIC developers to establish the industrial process, clinical development, and deployment is described. EXPERT OPINION: Highlighted is an alternative model for developing new vaccines for emerging infectious diseases of pandemic importance starting with an academic institution directly transferring their technology to LMIC vaccine producers without the involvement of multinational pharma companies.


Subject(s)
COVID-19 , Saccharomyces cerevisiae , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Technology , Recombinant Proteins/genetics , Antibodies, Viral , Antibodies, Neutralizing
9.
Protein J ; 42(4): 399-407, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20234295

ABSTRACT

COVID-19 is a disease that have affected the entire world, and it continues to spread with new variants. A patient's innate immune system plays a critical role in the mild and severe transition of COVID-19. Antimicrobial peptides (AMPs), which are important components of the innate immune system, are potential molecules to fight pathogenic bacteria, fungi, and viruses. Human ß-defensin 2 (hBD-2), a 41-amino-acid antimicrobial peptide, is one of the defensins inducibly expressed in the skin, lungs, and trachea in humans. In this study, it was aimed to investigate the interaction of hBD-2 produced recombinantly in Pichia pastoris with the human angiotensin-converting enzyme 2 (ACE-2) under in vitro conditions. First, hBD-2 was cloned in P. pastoris X-33 via the pPICZαA vector, a yeast expression platform, and its expression was confirmed by SDS-PAGE, western blotting, and qRT-PCR. Then, the interaction between recombinant hBD-2 and ACE-2 proteins was revealed by a pull-down assay. In light of these preliminary experiments, we suggest that the recombinantly produced hBD-2 may be protective against SARS-CoV-2 and be used as a supplement in treatment. However, current findings need to be supported by cell culture studies, toxicity analyses, and in vivo experiments.

10.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: covidwho-20233862

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emergent swine coronavirus which infects cells from the small intestine and induces watery diarrhea, vomiting and dehydration, causing mortality in piglets (>40%). The aim of this study was to evaluate the antigenicity and immunogenicity of the recombinant membrane protein (M) of PDCoV (rM-PDCoV), which was developed from a synthetic gene obtained after an in silico analysis with a group of 138 GenBank sequences. A 3D model and phylogenetic analysis confirmed the highly conserved M protein structure. Therefore, the synthetic gene was successfully cloned in a pETSUMO vector and transformed in E. coli BL21 (DE3). The rM-PDCoV was confirmed by SDS-PAGE and Western blot with ~37.7 kDa. The rM-PDCoV immunogenicity was evaluated in immunized (BLAB/c) mice and iELISA. The data showed increased antibodies from 7 days until 28 days (p < 0.001). The rM-PDCoV antigenicity was analyzed using pig sera samples from three states located in "El Bajío" Mexico and positive sera were determined. Our results show that PDCoV has continued circulating on pig farms in Mexico since the first report in 2019; therefore, the impact of PDCoV on the swine industry could be higher than reported in other studies.


Subject(s)
Coronavirus Infections , Swine Diseases , Swine , Animals , Mice , Membrane Proteins , Phylogeny , Genes, Synthetic , Escherichia coli
11.
Rev Esp Quimioter ; 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20233412

ABSTRACT

OBJECTIVE: Vaccination against SARS-CoV-2 is essential to mitigate the personal, social and global impact of the coronavirus disease (COVID-19) as we move from a pandemic to an endemic phase. Vaccines are now required that offer broad, long-lasting immunological protection from infection in addition to protection from severe illness and hospitalisation. Here we present a review of the evidence base for a new COVID-19 vaccine, PHH-1V (Bimervax®; HIPRA HUMAN HEALTH S.L.U), and the results of an expert consensus. METHODS: The expert committee consisted of Spanish experts in medicine, family medicine, paediatrics, immunology, microbiology, nursing, and veterinary medicine. Consensus was achieved using a 4-phase process consisting of a face-to-face meeting during which the scientific evidence base was reviewed, an online questionnaire to elicit opinions on the value of PHH-1V, a second face-to-face update meeting to discuss the evolution of the epidemiological situation, vaccine programmes and the scientific evidence for PHH-1V and a final face-to-face meeting at which consensus was achieved. RESULTS: The experts agreed that PHH-1V constitutes a valuable novel vaccine for the development of vaccination programmes aimed towards protecting the population from SARS-CoV-2 infection and disease. Consensus was based on evidence of broad-spectrum efficacy against established and emerging SARS-CoV-2 variants, a potent immunological response, and a good safety profile. The physicochemical properties of the PHH-1V formulation facilitate handling and storage appropriate for global uptake. CONCLUSIONS: The physicochemical properties, formulation, immunogenicity and low reactogenic profile of PHH-1V confirm the appropriateness of this new COVID-19 vaccine.

12.
Viruses ; 15(5)2023 04 29.
Article in English | MEDLINE | ID: covidwho-20232812

ABSTRACT

The rapid mutation and spread of SARS-CoV-2 variants recently, especially through the emerging variants Omicron BA5, BF7, XBB and BQ1, necessitate the development of universal vaccines to provide broad spectrum protection against variants. For the SARS-CoV-2 universal recombinant protein vaccines, an effective approach is necessary to design broad-spectrum antigens and combine them with novel adjuvants that can induce high immunogenicity. In this study, we designed a novel targeted retinoic acid-inducible gene-I (RIG-I) receptor 5'triphosphate double strain RNA (5'PPP dsRNA)-based vaccine adjuvant (named AT149) and combined it with the SARS-CoV-2 Delta and Omicron chimeric RBD-dimer recombinant protein (D-O RBD) to immunize mice. The results showed that AT149 activated the P65 NF-κB signaling pathway, which subsequently activated the interferon signal pathway by targeting the RIG-I receptor. The D-O RBD + AT149 and D-O RBD + aluminum hydroxide adjuvant (Al) + AT149 groups showed elevated levels of neutralizing antibodies against the authentic Delta variant, and Omicron subvariants, BA1, BA5, and BF7, pseudovirus BQ1.1, and XBB compared with D-O RBD + Al and D-O RBD + Al + CpG7909/Poly (I:C) groups at 14 d after the second immunization, respectively. In addition, D-O RBD + AT149 and D-O RBD + Al + AT149 groups presented higher levels of the T-cell-secreted IFN-γ immune response. Overall, we designed a novel targeted RIG-I receptor 5'PPP dsRNA-based vaccine adjuvant to significantly improve the immunogenicity and broad spectrum of the SARS-CoV-2 recombinant protein vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Mice , Adjuvants, Vaccine , SARS-CoV-2/genetics , COVID-19/prevention & control , Adjuvants, Immunologic , ABO Blood-Group System , Antibodies, Neutralizing , Recombinant Proteins/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus
13.
NPG Neurologie - Psychiatrie - Geriatrie ; 2023.
Article in English, French | Scopus | ID: covidwho-2324322

ABSTRACT

Vaccination recommendations for the prevention of herpes zoster (HZ) aim to reactivate specific cell-mediated immunity towards the varicella/zoster virus. This specific immunity naturally declines with age but there are many factors that can accelerate this decline, including, most recently, the immune response induced by SARS-CoV-2. Two vaccines are available to date. A live attenuated vaccine (Zostavax®) licensed in 2006 and more recently a recombinant vaccine (Shingrix®). We present data on the efficacy of these two vaccines as well as on the relevant precautions and safety of use. © 2023 Elsevier Masson SAS Les recommandations vaccinales en matière de prévention du zona ont pour objectif de réactiver l'immunité à médiation cellulaire spécifique contre le virus varicelle-zona. Cette immunité spécifique décline naturellement avec l'âge mais nombreux sont les facteurs qui peuvent accélérer ce déclin dont récemment la réponse immunitaire induite par le SARS-CoV-2. Deux vaccins sont disponibles à ce jour : un vaccin vivant atténué (Zostavax®) homologué en 2006 et plus récemment un vaccin recombinant (Shingrix®). Nous présentons des données d'efficacité de ces deux vaccins ainsi que celles concernant leurs précautions d'emploi et la sécurité de leur utilisation. © 2023 Elsevier Masson SAS

14.
Thai Journal of Veterinary Medicine ; 52(3):583-590, 2022.
Article in English | CAB Abstracts | ID: covidwho-2323611

ABSTRACT

The aim of this study was to clone, express and identify the truncated S1 gene of nephrotropic infectious bronchitis virus (IBV) and granulocyte-monocyte colony stimulating factor (GM-CSF) of chicken. Firstly, two genes were amplified by polymerase chain reaction (PCR) and cloned into pMD18-T vector. The truncated S1 gene designated as Sf200 containing five antigenic sites of S1 glycoprotein on amino acid residues (aa) 24-61, (aa) 291-398 and (aa) 497-543 and GM-CSF were then amplified from the respective recombinant pMD18-T plasmids and cloned into pET-32a (+) vector resulting pET-Sf200, pET-GM which were identified by restriction enzyme digestion and sequencing analysis. The in vitro expression of truncated Sf200 and GM-CSF constructs were later expressed in E. coli BL21 with a molecular mass of approximately 38 kDa and 29 kDa respectively as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Polyclonal antibodies were developed by injecting E. coli expressed Sf200 and GM-CSF into the SPF mice and were used to identify the recombinant proteins by Western blot analysis. These findings indicated that the polyclonal antibodies produced in mice could be used to detect the recombinant truncated Sf200 and GM-CSF and vice versa.

15.
International Journal of Infectious Diseases ; 130(Supplement 2):S9-S10, 2023.
Article in English | EMBASE | ID: covidwho-2323404

ABSTRACT

Intro: With the first case of COVID-19 in Cuba on March 11, 2020, the Center for Genetic Engineering and Biotechnology in Havana began an extensive vaccine program. Two vaccines based on RBD recombinant protein were developed, one for systemic administration "Abdala" and one mucosal vaccine "Mambisa". Abdala received the EUA in July 2021 and "Mambisa" completed its clinical development as a booster dose for convalescent subjects. Method(s): Two doses (25 and 50 microg) and two schedules (0-14-28 and 1-28-56 days) were evaluated in phase I clinical trials with volunteers 19 to 54 years old. The phase II and III clinical trials were also double-blind, randomized, and placebo-controlled, and included respectively 660 and 48,000 volunteers from 19 to 80 years. The anti-RBD titers were evaluated using a quantitative ELISA system developed at the Center for Immunoassay, Havana Cuba, and ELECSYS system from Roche. The RBD to ACE2 plate-based binding competitive ELISA was performed to determine the inhibitory activity of the anti-RBD polyclonal sera on the binding of the hFc-ACE2 coated plates. The neutralization antibody titers were detected by a traditional virus microneutralization assay (MN50). Finding(s): The Abdala vaccine reached 92.28% efficacy. The epidemic was frankly under control in Cuba after the vaccine introduction having reached the highest levels of cases and mortality in July 2021 with the dominance of the Delta strain. The peak of the Omicron wave, unlike other countries, did not reach half of the cases of the Delta wave with a significant reduction in mortality. The mucosal vaccine candidate "Mambisa" completed its clinical development as a booster dose for convalescent subjects reaching the trial end-point. Conclusion(s): Vaccine composition based on RBD recombinant antigen alone is sufficient to achieve high vaccine efficacy comparable to mRNA and live vaccine platforms. The vaccine also protects against different viral variants including Delta and Omicron strains.Copyright © 2023

16.
Journal of Clinical Rheumatology ; 29(4 Supplement 1):S13, 2023.
Article in English | EMBASE | ID: covidwho-2322778

ABSTRACT

Objectives: Immunization against SARS-CoV-2 is an effective strategy to reduce morbidity and mortality in the face of the COVID-19 pandemic. People with Immune-mediated Rheumatic Diseases (IMRD) also benefited from this campaign. However, there is a limited amount of data on the outcome of vaccination in these patients, in terms of those who were infected by the virus. This study had the objective to evaluate the rate of COVID-19 cases in patients with IMRD after vaccination against SARS-CoV-2. Method(s): Observational, longitudinal and ambidirectional study with follow-up of subgroups of patients with IMRD immunized with vaccines made available by the National Immunization Plan (inactivated adsorbed vaccine registered by the Instituto Butantan (IB), recombinant vaccines registered by Bio Manguinhos/ Fiocruz and by Janssen, and Pfizer/BioNTech). Sociodemographic data and questionnaires on flu syndrome, laboratory confirmation of infection and need for hospitalization and outcomes were collected and stored via an online platform. This study is associated to the SAFER Project from the Brazilian Society of Rheumatology and it was approved by the local Research Ethics Committee. Result(s): A total of 223 patients aged over 18 years, mean age 42.79 +/- 15.18 years, were included. All were within the inclusion/exclusion criteria, with 83% being female. The main IMRD included were systemic lupus erythematosus (39%) and rheumatoid arthritis (33.6%). After the 1st dose, 1.45% of patients had COVID-19, 50% sought health services (emergency care), without the need for hospitalization and after the 2nd dose, 1.5% had the disease, of which none sought health services, required hospitalization or had a negative outcome. After the 3rd dose,: 2.9%were infected with SARS-CoV-2 one month later, 15.6% two to three months later and 5.5% four to six months later, all with laboratory confirmation;only 4% presenting any serious complication;there were no deaths. After the 4th dose, 9.1%of patients had COVID-19, of which 40%were hospitalized, without the need for assisted ventilation;half of these patients had a serious complication, but there no deaths. Conclusion(s): In this study, we observed the effectiveness of the vaccine in preventing severe cases of COVID-19 and complications of SARS-CoV-2 infection.

17.
BIOpreparations ; Prevention, Diagnosis, Treatment. 23(1):76-89, 2023.
Article in Russian | EMBASE | ID: covidwho-2322749

ABSTRACT

Monitoring of the proportion of immune individuals and the effectiveness of vaccination in a population involves evaluation of several important parameters, including the level of virus-neutralising antibodies. In order to combat the COVID-19 pandemic, it is essential to develop approaches to detecting SARS-CoV-2 neutralising antibodies by safe, simple and rapid methods that do not require live viruses. To develop a test system for enzyme-linked immunosorbent assay (ELISA) that detects potential neutralising antibodies, it is necessary to obtain a highly purified recombinant receptor-binding domain (RBD) of the spike (S) protein with high avidity for specific antibodies. The aim of the study was to obtain and characterise a SARSCoV-2 S-protein RBD homodimer and a recombinant RBD-expressing cell line, as well as to create an ELISA system for detecting potential neutralising antibodies. Material(s) and Method(s): the genetic construct was designed in silico. To generate a stable producer cell line, the authors transfected CHO-S cells, subjected them to antibiotic pressure, and selected the optimal clone. To isolate monomeric and homodimeric RBD forms, the authors purified the recombinant RBD by chromatographic methods. Further, they analysed the activity of the RBD forms by Western blotting, bio-layer interferometry, and indirect ELISA. The analysis involved monoclonal antibodies GamXRH19, GamP2C5, and h6g3, as well as serum samples from volunteers vaccinated with Gam-COVID-Vac (Sputnik V) and unvaccinated ones. Result(s): the authors produced the CHO-S cell line for stable expression of the recombinant SARS-CoV-2 S-protein RBD. The study demonstrated the recombinant RBD's ability to homodimerise after fed-batch cultivation of the cell line for more than 7 days due to the presence of unpaired cysteines. The purified recombinant RBD yield from culture broth was 30-50 mg/L. Monomeric and homodimeric RBD forms were separated using gel-filtration chromatography and characterised by their ability to interact with specific monoclonal antibodies, as well as with serum samples from vaccinated volunteers. The homodimeric recombinant RBD showed increased avidity for both monoclonal and immune sera antibodies. Conclusion(s): the homodimeric recombinant RBD may be more preferable for the analysis of levels of antibodies to the receptor-binding domain of the SARS-CoV-2 S protein.Copyright © 2023 Authors. All rights reserved.

18.
Int Immunopharmacol ; 120: 110340, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2325713

ABSTRACT

Interferons play a critical role in the innate immune response against several infections and play a key role in the control of a variety of viral and bacterial infectious diseases such as hepatitis, covid-19, cancer, and multiple sclerosis. Therefore, natural or synthetic IFN production is important and had three common methods, including bacterial fermentation, animal cell culture, and recombinant nucleic acid technology. However, the safety, purity, and accuracy of the most preferred INF production systems have not been extensively studied. This study provides a comprehensive comparative overview of interferon production in various systems that include viral, bacterial, yeast, and mammalian. We aim to determine the most efficient, safe, and accurate interferon production system available in the year 2023. The mechanisms of artificial interferon production were reviewed in various organisms, and the types and subtypes of interferons produced by each system were compared. Our analysis provides a comprehensive overview of the similarities and differences in interferon production and highlights the potential for developing new therapeutic strategies to combat infectious diseases. This review article offers the diverse strategies used by different organisms in producing and utilizing interferons, providing a framework for future research into the evolution and function of this critical immune response pathway.


Subject(s)
COVID-19 , Communicable Diseases , Animals , Saccharomyces cerevisiae , Interferons/therapeutic use , Immunity, Innate , Communicable Diseases/drug therapy , Mammals
19.
Front Bioeng Biotechnol ; 11: 1180044, 2023.
Article in English | MEDLINE | ID: covidwho-2323782

ABSTRACT

SARS-CoV-2 infects human cells via binding of the viral spike glycoprotein to its main cellular receptor, angiotensin-converting enzyme 2 (ACE2). The spike protein-ACE2 receptor interaction is therefore a major target for the development of therapeutic or prophylactic drugs to combat coronavirus infections. Various engineered soluble ACE2 variants (decoys) have been designed and shown to exhibit virus neutralization capacity in cell-based assays and in vivo models. Human ACE2 is heavily glycosylated and some of its glycans impair binding to the SARS-CoV-2 spike protein. Therefore, glycan-engineered recombinant soluble ACE2 variants might display enhanced virus-neutralization potencies. Here, we transiently co-expressed the extracellular domain of ACE2 fused to human Fc (ACE2-Fc) with a bacterial endoglycosidase in Nicotiana benthamiana to produce ACE2-Fc decorated with N-glycans consisting of single GlcNAc residues. The endoglycosidase was targeted to the Golgi apparatus with the intention to avoid any interference of glycan removal with concomitant ACE2-Fc protein folding and quality control in the endoplasmic reticulum. The in vivo deglycosylated ACE2-Fc carrying single GlcNAc residues displayed increased affinity to the receptor-binding domain (RBD) of SARS-CoV-2 as well as improved virus neutralization activity and thus is a promising drug candidate to block coronavirus infection.

20.
Microb Cell Fact ; 22(1): 103, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2321686

ABSTRACT

BACKGROUND: The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T. reesei; however, glucose represses this transcriptional induction. Therefore, cellulose is commonly used as a carbon source for providing its degraded sugars such as cellobiose, which act as inducers to activate the strong promoters of the major cellulase (cellobiohydrolase 1 and 2 (cbh1 and cbh2) genes. However, replacement of cbh1 and/or cbh2 with a gene encoding the protein of interest (POI) for high productivity and occupancy of recombinant proteins remarkably impairs the ability to release soluble inducers from cellulose, consequently reducing the production of POI. To overcome this challenge, we first used an inducer-free biomass-degrading enzyme expression system, previously developed to produce cellulases and hemicellulases using glucose as the sole carbon source, for recombinant protein production using T. reesei. RESULTS: We chose endogenous secretory enzymes and heterologous camelid small antibodies (nanobody) as model proteins. By using the inducer-free strain as a parent, replacement of cbh1 with genes encoding two intrinsic enzymes (aspartic protease and glucoamylase) and three different nanobodies (1ZVH, caplacizumab, and ozoralizumab) resulted in their high secretory productions using glucose medium without inducers such as cellulose. Based on signal sequences (carrier polypeptides) and protease inhibitors, additional replacement of cbh2 with the nanobody gene increased the percentage of POI to about 20% of total secreted proteins in T. reesei. This allowed the production of caplacizumab, a bivalent nanobody, to be increased to 9.49-fold (508 mg/L) compared to the initial inducer-free strain. CONCLUSIONS: In general, whereas the replacement of major cellulase genes leads to extreme decrease in the degradation capacity of cellulose, our inducer-free system enabled it and achieved high secretory production of POI with increased occupancy in glucose medium. This system would be a novel platform for heterologous recombinant protein production in T. reesei.


Subject(s)
Cellulase , Single-Domain Antibodies , Trichoderma , Cellulase/genetics , Cellulase/metabolism , Glucose/metabolism , Single-Domain Antibodies/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cellulose/metabolism , Trichoderma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL